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In this paper we report results of two-dimensional simulations of the motion of elliptic 
capsules carried by a Poiseuille flow in a channel. The numerical method allows 
computation of the capsule motion and the fluid flow around the capsule, and accurate 
evaluation of the lift force and torque. Results show that the motion of a capsule which 
is heavier than the carrying fluid may be decomposed into three stages: initial lift-off, 
transient oscillations and steady flying. The behaviour of the capsule during initial lift- 
off and steady flying is analysed by studying the pressure and shear stress distributions 
on the capsule. The dominant mechanism for the lift force and torque is lubrication or 
inertia or a combination of the two under different conditions. The lift-off velocity for 
the ellipse in two dimensions is compared with experimental values for cylindrical 
capsules in pipes. Finally, the mechanisms of lift for capsules are applied to flying core 
flows, and it is argued that inertial forces are responsible for levitating heavy crude oil 
cores lubricated by water in a horizontal pipeline. 

1. Introduction 
In the early sixties, a group of researchers at the Alberta Research Council, Canada, 

were engaged in the study of transporting mixtures of immiscible liquids, such as crude 
oil and water, through pipelines. Extending the idea of these mixtures as multiphase 
systems, Hodgson & Charles (1963) proposed the concept of capsule pipelining?, which 
is the long-distance transportation of cylindrical solid forms suspended and driven by 
a fluid flow in a pipe. A series of studies carried out at the Alberta Research Council 
addressed various aspects of the motion of solid capsules in round pipes (cf. Brown 
1987). A systemic account of the earlier work on capsule motion has been given by 
Govier & Aziz (1972). Subsequent research is represented by the numerous articles 
published in the proceedings of the International Conference on the Hydraulic 
Transport of Solids in Pipes sponsored by the British Hydromechanics Research 
Association (see, for example, Ellis 1976). The most recent and comprehensive studies 
of capsule pipelining have been done by Henry Liu and coworkers at the Capsule 
Pipeline Research Center at the University of Missouri-Columbia (Liu 198 1, 1992). 

A complete capsule pipeline system has many technical aspects. In this paper, we will 
only discuss the fluid mechanics involved in the motion of a single capsule which is 
heavier than the liquid flowing in a horizontal pipe. Previous observations have 
established the following scenario for a cylindrical capsule under the action of a liquid 
flow in a pipe. When the bulk liquid velocity V,  is below a certain value (called the 

t One referee pointed out that the concept of hydraulic capsule pipelines originated with G. Pike 
in 1940. 



202 J.  Feng, P. Y. Huang and D. D. Joseph 

vb c--- L Tail 

FIGURE 1. Motion of a solid capsule in a pipe: flying regime. V, is the bulk velocity of the fluid 
flow (= flow rate/cross-section area), V,  is the velocity of the capsule. 

incipient velocity &), the capsule sits still on the floor. When V, exceeds 6, the capsule 
starts to slide on the bottom, either with its side horizontal or its tail up. After V, 
exceeds another threshold value (called the lift-off velocity V,), the nose of the capsule 
is raised and the entire capsule becomes water-borne and ‘flies’ at a velocity V,  that is 
greater than V, (figure 1). This flying regime is the optimal condition of operation 
because it consumes less power and causes less wear both on the capsule and on the 
pipe. 

Quantities of most practical interest are the two threshold velocity values ( K  and V,) 
and the holdup ratio V,/V,. These are affected by the following parameters: liquid 
velocity V,, capsule-liquid density ratio p,/p,, capsule-pipe diameter ratio d / D  and 
capsule aspect ratio d / L .  The incipient velocity has been measured by a few authors, 
e.g. Lazarus & Kilner (1970). Liddle (1968) studied the lift-off velocity at various 
conditions. Ellis (1964) and Ellis & Kruyer (1970) obtained extensive data on the 
holdup ratio, most of which, however, fall into the sliding regime of motion. Richards’ 
(1992) experiment covered the flying regime, but the effects of various parameters were 
not investigated systematically. Empirical and semi-empirical correlations have been 
developed based on experimental data and ad hoc analysis. Some of the earlier 
correlations were summarized by Govier & Aziz (1972). Liu’s group developed a 
complete set of correlations that predict the incipient velocity, lift-off velocity and 
pressure gradient in a pipeline (Liu 1992; Richards 1992). With a large number of 
empirical coefficients, these relations generally work well. 

So far, research work on the behaviour of a capsule in a pipeline has been mostly 
design-oriented. No thorough understanding of the fundamental fluid mechanics has 
even been attempted, especially for a capsule heavier than the carrying fluid (one 
exception is, perhaps, the work of Liu & Graze 1983 on the pressure distribution on 
a stationary capsule). Data from different experiments show conflicting trends because 
there is no scaling law. For example, Liddle’s (1968) experiment shows that the 
lift-off velocity V, increases if the diameter ratio d / D  decreases. Ellis (1964) found, 
however, that given the same values for other parameters, capsules with smaller d / D  
lift off at lower liquid velocities. Analytical models are usually very rough and 
primitive. The main cause of these defects is that the fluid flow around the capsule is 
not well understood, and therefore the pressure and shear stress distribution on the 
capsule is completely unknown. The upshot is that the lift force and drag on the capsule 
have to be somehow postulated; there is then an empirical part to any ‘theoretical 
analysis’ that does not contain enough information on fluid flow around the capsule. 

One particularly interesting example is the lift-off of a capsule heavier than the 
carrying fluid. When the liquid velocity is below V,, the capsule slides on the bottom 
of the pipe, either with its side horizontal or with its tail up (Ellis 1976). This latter 
orientation is consistent with the pressure distribution on a stationary capsule 
measured by Liu & Graze (1983). If the liquid velocity exceeds V’, the capsule 
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eventually adopts a nose-up orientation, and lifts off the bottom of the pipe completely. 
People have tried to understand the lift force that overcomes the buoyant weight of the 
capsule, and the mechanisms by which the nose of the capsule is kept up. Ellis (1976) 
attributed the lift-up of the nose to the vortex in front of the nose which creates an 
upward shear. The lift force was explained by an analogy to a lubricated slipper-pad 
(Ellis 1964). In other words, the capsule rides on a wedge of liquid which provides the 
support via lubrication. The lubrication mechanism does not apply to cases having 
large gaps and/or large tilt angles between the wall of the pipe and the bottom of the 
capsule. Liu (1982) attempted to interpret the lift as an inertial effect and studied the 
velocity profile far upstream of the capsule. The relative motion of the liquid will have 
a stronger impact on the bottom of the capsule than on the top. A high pressure will 
build under the front edge of the capsule (cf. Liu 1982, figure 2). This picture explains 
the nose-up orientation and also suggests a correlation for the lift force. The inclusion 
of inertia seems reasonable; the lift-off velocity predicted from this lift force agrees 
rather well with Liddle’s measurement. However, the argument relies on the 
undisturbed relative motion of the liquid far upstream, and cannot incorporate the 
disturbed flow near the capsule. Thus, the physical origin of the hydrodynamic lift 
remains unresolved. Both Ellis (1976) and Liu (1982) recognized the importance of 
fluid flow near the capsule, especially at the front nose. But the characteristics of the 
flow have not been revealed because direct measurement is difficult. 

Another example is the behaviour of a flying capsule after it lifts off. We have already 
noted that holdup data in the flying regime are scarce. Simplified analysis has been 
carried out extensively (cf. Govier & Aziz 1972). Kruyer, Redberger & Ellis (1967) 
assumed that the capsule is parallel to the axis of the pipe and may be eccentric. The 
average velocity and velocity profile in the annulus are postulated and a friction 
coefficient is used to estimate the drag on the capsule. The analysis of Garg (1977) 
allows the capsule to make an angle with the pipe wall and takes into account the 
solid-solid friction for a partially levitated capsule. The fundamental difficulty with 
this kind of analysis is that people do not understand how the capsule is suspended and 
tilted, and thus cannot estimate its equilibrium position and orientation in the pipe. 
These properties should be related to the basic parameters of the system by exploring 
the velocity and pressure fields around the capsule. Richards’ (1992) new data on the 
capsule position and tilt angle are valuable as the first step toward this end. 

The goal of our numerical simulation is to provide detailed information about the 
fluid flow around the capsule. Specifically, we will investigate the origin of the 
hydrodynamic lift and study the equilibrium position and orientation of a flying 
capsule. Our simulation is for laminar flow, but turbulence is the usual condition in 
applications. Another limitation of our numerical code is that only two-dimensional 
problems can be handled at the present time. Previous experience has proved, however, 
that two-dimensional simulations are able to embrace and demonstrate many 
important physical mechanisms in three-dimensional flow situations (Feng, Hu & 
Joseph 1994a, b ;  Huang, Feng & Joseph 1994). To avoid difficulties in programming 
with sharp corners, our capsule will be represented by an ellipse. A more complete 
dynamic simulation of all the regimes of capsule motion, including the implementation 
of a rectangular shape for the capsule, is currently underway, and will be reported in 
future publications. 
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FIGURE 2.  The elliptic capsule and the Poiseuille flow in a two-dimensional channel. 

2. Numerical methods 
Consider an elliptic capsule in a two-dimensional channel (figure 2). The width of the 

channel is D, and a Poiseuille flow with maximum velocity U, prevails far upstream of 
the capsule. The major and minor axes of the ellipse are L and d, respectively. The 
centre of the ellipse is at (xc, y,) and its major axis makes an angle a with the direction 
of the undisturbed stream. 

We will study the unsteady motion of the ellipse. The fluid flow is assumed to be 
laminar and is governed by the Navier-Stokes equations : 

(1) 
v . u  = 0, - + u . v u  au = --+vfvzu, VP 

a t  Pf 

where pf and vf are the density and kinematic viscosity of the fluid. The translation and 
rotation of the ellipse satisfy Newton’s law for rigid bodies: 

m - = F F - m  d V  ( 1 - 2  P ) g j ,  I-==, dS2 
dt P c  dt 

where pc, m and I are the density, mass and moment of inertia of the capsule; V and 
S2 are its velocity and angular velocity. F is the hydrodynamic force on the ellipse. The 
torque Marises as a result of the pressure and shear stress distributions on the capsule. 
We introduce the following non-dimensional variables : 

Now equations ( 1 )  and (2) can be written in dimensionless forms (the asterisk has been 
omitted) : 

(3) 
au 1 
at Re 

v - u  = 0, - + u . v u  = - v p + - v z u ,  

d V  
dt 

qx-= F - x ( p - l ) F r j ,  (4) 

where the dimensionless parameters are the Reynolds number Re = U, D / v f ,  the 
Froude number Fr = gd/U,2, the capsule-fluid density ratio p = p,/pf, the blockage 
ratio K~ = d / D  and the aspect ratio of the capsule K~ = d / L .  

At t = 0, the ellipse is released at an initial position (xo, yo)  with zero initial velocity. 
The velocity on the channel walls is zero, and the no-slip condition is applied on the 
surface of the capsule. The inflow boundary is 4L upstream of the centre of the capsule, 
where the Poiseuille velocity profile is assumed. The outflow boundary is 5L 



Simulation of the motion of capsules in pipelines 205 

downstream of the capsule, where the normal derivatives of the velocity are put to zero. 
The computational domain moves with the capsule. 

The Navier-Stokes equations (3) are solved using a finite element code POLYFLOW, 

originally developed in Belgium by the group of Professor Marcel J. Crochet (Crochet 
et al. 1991). The dynamic coupling between the fluid flow and the motion of the capsule 
is realized by an Explicit-Implicit scheme proposed by Hu, Joseph & Crochet (1992), 
which was designed for the general problem of solid particle motions. The basic 
procedure is as follows: 

(i) Explicit updating. At each time step ti, the current position, velocity and force 
of the particle are used to predict the new position and velocity at the next time 
step ti+l. 

(ii) Re-meshing and projection. For this new position, the computational domain 
is re-meshed, and the velocity field at ti is projected onto the new mesh. 

(iii) Navier-Stokes solution. On the new mesh, the pressure and velocity fields at ti+l 
are solved using the velocity field at ti (after projection). The explicitly updated 
particle velocity serves as the boundary condition on the particle surface. Then 
the force and moment on the particle are computed. 

(iv) Implicit updating. The velocity of the particle is re-updated implicitly using the 
force and moment at ti+l. If the new particle velocity is different from the one 
obtained in (i), then we go back to (iii) and solve the Navier-Stokes equations 
using the new particle velocity as the boundary condition. This process is 
repeated till satisfactory convergence is reached. Then we go to (i) and advance 
in time. 

In POLYFLOW, the surface force on the solid particle is not integrated directly from 
the stress tensor on boundary nodes. Instead, the Gauss integral formula is used to 
convert this surface integral into a volume integral on the domain outside the particle. 
In the present paper, we are interested in the distributions of surface stresses. 
Therefore, the shear stress is computed directly from the velocity gradient in the finite 
elements around the capsule. Details of the second-order interpolation scheme are 
given by Huang et al. (1994). 

The combination of POLYFLOW and the remeshing-updating method has been 
applied successfully to various problems of particle motion (cf. Feng et al. 1994a, b). 
Because of the strong blockage inside the channel, the capsule problem generally 
requires finer mesh and more grid nodes. A typical mesh has about 1500 triangular 
elements and 3000 nodes. Some 300 time steps are computed before the capsule attains 
its equilibrium position and orientation, which takes about 2 hours on a Cray-XMP 
supercomputer. 

3. Stokes flow 
Recently, Sugihara-Seki (1993) published a numerical simulation of the motion of a 

neutrally buoyant ellipse in a Poiseuille flow in the limit of Re = 0. The Stokes problem 
is solved for a prescribed position and orientation of the ellipse and the velocity of the 
ellipse is computed from the condition of vanishing force and torque. The neighbouring 
quasi-steady states are then connected to form the trajectory of the ellipse. Three types 
of periodic motion are predicted for the ellipse depending on its initial condition: (i) 
continuous rotation in one direction between a wall and the centreline of the channel; 
(ii) oscillation with its long axis swinging about a = 90" and its centre swinging across 
the centreline; (iii) oscillation with its long axis in a small-amplitude swing about 
a = 0". Type (i) occurs only when the particle is relatively small; for small particles 
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FIGURE 3. The velocity u- V,  relative to the longitudinal velocity V,  of a neutrally buoyant ellipse in 
Stokes flow. The Poiseuille flow is from left to right. p = 1, K~ = 0.4, K~ = 0.5. Initially the ellipse is 
on the centreline of the channel with a tilt angle a, = 36". Dimensionless time t = 0.26, and the 
dimensionless force and torque on the ellipse are (I$ F,, M,) = (0.0589, 0.650, 0.486). 

type (iii) occurs near the wall. For larger particles type (i) never occurs and the 
oscillation (iii) is on the centreline. We shall now compare our simulation in the limit 
of Stokes flow to the simulation of Sugihara-Seki (1993). We also wish to examine the 
intriguing periodic motions predicted for Stokes flow. 

We set the nonlinear term u-Vu and the transient au/at to zero in equation (3). The 
density ratio is set to 1. Geometric parameters K~ and K~ match those used in Sugihara- 
Seki. A plot of the relative velocity field is shown in figure 3; this closely resembles 
figure 5(a)  of Sugihara-Seki (1993) even though our capsule is not force-free and 
torque-free. 

To study the motion of type (iii) in Sugihara-Seki's figure 13(b), we release a large 
ellipse ( K ,  = 0.4472, K~ = 0.5) on the centreline with a, = 9'. These are exactly the same 
initial conditions as the ones used by Sugihara-Seki except that the initial particle 
velocity is zero in our simulation. The trajectory and rotation of the ellipse are shown 
in figure 4. Shortly after the particle is released it enters an oscillation around ( y c ,  
a) = (0.5,O). The amplitude of this oscillation approaches a constant after some time. 
The variation in ye and a are locked such that the major axis of the ellipse is most tilted 
when it is on the centreline and is parallel to the undisturbed flow when it is closest to 
the wall. We have essentially obtained the type (iii) oscillation described by Sugihara- 
Seki. However, the amplitude of yc  is about 26% smaller than that in Sugihara-Seki 
(1993), and the amplitude of a is 22% larger. This may be explained by one or both 
of the following causes. First, our simulation does not neglect the inertia of the solid 
particle and so it is subject to forces and acceleration. Secondly, the initial velocity is 
zero in our simulation and there is an initial transient. In Sugihara-Seki (1993), the 
'initial velocity' is the velocity computed from the quasi-steady Stokes solution for the 
initial configuration, and there is no transient. In general, our code reproduces 
Sugihara-Seki's results in the limit of Stokes flows. 

If we leave out the nonlinear term u-Vu but keep the transient term &/at, the 
motion of the capsule is drastically different from that shown in figure 4. The capsule 
oscillates twice across the centreline and then approaches a steady motion on the 
centreline with its long axis parallel to the wall. Obviously, the transient term can be 
important even when u is small. A simple estimation based on the periodic motion in 
figure 4 shows that &/at is some 20 times smaller than V2u/Re,  but au/at  can be three 
times larger than V2u/Re.  So the periodic motion of Sugihara-Seki (1993) is not 
physically meaningful and will not be observed in experiments. Generally, if the 
particle motion does not involve large accelerations and high frequencies, the quasi- 
static method may work well for simulations of Stokes flows (Ganatos, Pfeffer & 
Weinbaum 1978; Durlofsky, Brady & Bossis 1987), though the approximate trajectory 
is close to the true trajectory only for a finite time and the two will eventually diverge. 
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FIGURE 4. The motion of a neutrally buoyant ellipse in Stokes flow: (a) trajectory, (b) tilt angle. 
p = 1, K~ = 0.4472, K~ = 0.5. The ellipse was initially released on the centreline with tilt angle 
a, = 9". 

For highly transient motions, the simulation can suffer large errors even when the fluid 
velocity is small. 

4. Results and discussion 
Our major purpose in this paper is to understand the origin of the force that lifts the 

capsule off the floor and sustains its buoyant weight in the flying regime. The 
hydrodynamic forces and moment on the capsule define its motion, and in particular 
its position and orientation. The configuration of the capsule in turn affects the flow 
field around it, which then gives rise to the hydrodynamic forces and moment. This 
circle of events makes it difficult to launch deliberately designed test runs to isolate 
effects of individual factors. Hence, the mechanisms of the hydrodynamic forces and 
their relationship to the behaviour of the capsule are best understood by following the 
entire unsteady motion. 

We have shown that the motion of a capsule is determined by five non-dimensional 
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FIGURE 5. The trajectory and rotation of the capsule shortly after lift-off. p = 1.01. (a) Re = 5000, 
the tail lifts off first (negative a); (b) Re = 250, the nose lifts off first. 

L TI 

FIGURE 6. Streamlines of the relative flow around the capsule immediately after its release. Re = 5000, 
p = 1.01, time step = 3, time t = 2.77 x The plus and minus sign indicate the positions of the 
maximum and minimum pressure. 

parameters: Re, Fr, p, K~ and K ~ .  In this paper, the effects of geometry are not studied 
and we set K~ = 0.5, K~ = 0.4 for all the computations. These values are close to those 
of a typical capsule pipeline (Liu 1982). An efficient way to study Re, Fr, p is to examine 
the effect of each parameter while holding the other two constant. However, none of 
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the experimental results in the literature has been presented in this framework. In the 
context of experimental research and practical operations, it is more natural to vary the 
fluid velocity and observe the behaviour of the capsule while other properties, such as 
the fluid viscosity, capsule density, its shape and size, are fixed. For example, the 
different regimes of motion are always described in terms of threshold velocities (Liu 
1992). Here, we will follow the traditional approach of using U, and pc as the control 
variables. In the computation, U, is represented by the Reynolds number Re and pc by 
the density ratio p. We prescribe K ~ ,  K~ and Fr Re2 = gdD2/v; = 4.9 x lo6 while varying 
Re and p. 

In most of the simulations, the capsule is released at an initial position (xo, yo) = (0, 
0.255) with the major axis horizontal. Note that the lowest point under the capsule is 
only 0.005 off the floor. We consider this an approximation to the situation where the 
capsule sits on the floor. Reducing this clearance to 0.002 does not affect the results. 
But a still closer approach between the wall and the capsule causes difficulties in our 
mesh generator and the whole code fails. 

For all the p and Re values we have tested, the motion of the capsule can be 
decomposed into three stages : initial lift-off, transient bumps and steady flying. After 
release, the centre of the capsule starts to move forward and then upward. Depending 
on the magnitude of Re, the initial rotation can be in either direction, and so the 
capsule assumes a tail-up or nose-up posture. Then there is a transient phase when both 
the elevation and the orientation of the capsule oscillate. Finally the capsule attains an 
equilibrium position and orientation and flies steadily with its nose up. The mechanisms 
of lift will be studied both in the lift-off and the steady flying stages. We call attention 
to the fact that the term 'lift-off' is used in two senses in this paper. One is the initial 
l i f t -o f to  be discussed next; the other is associated with the lift-of velocity V+, which 
is the minimum fluid velocity to completely float the capsule (Liu 1982). The initial lift- 
off is the early stage of the motion of a capsule when the fluid velocity exceeds V,. The 
lift-off velocity will be discussed as related to Liu's correlation in 54.3.2. 

4.1. Initial lift-of 

For a fixed value of p, our simulations show that lift-off is qualitatively different at 
small and large Re. At large Re, the tail of the capsule lifts off first, while for relatively 
small Re the nose lifts off first (figure 5). These two cases will be analysed separately. 

4.1,l. Lift-of at large Re 
A typical run with Re = 5000 and p = 1.01 is studied. Figure 6 shows the streamlines 

of the relative motion around the capsule immediately after release. Because the 
capsule has already acquired a horizontal velocity V,, the walls of the channel are 
moving to the right at V,  as seen in a reference frame fixed on the capsule. The most 
remarkable feature is the large eddies on the under side of the capsule. 

Figure 7(a )  shows the pressure distribution on the surface of the capsule. The 
maximum pressure occurs at 8 = 40", and the minimum at 8 = 140"; both positions are 
marked in figure 6. This distribution is just the opposite of what one would expect from 
lubrication, which would produce high pressure under the nose and low pressure under 
the tail because the floor is sliding to the right. In fact, these pressure extrema are 
associated with inertia. 

Let us consider the relative velocity far upstream at interesting elevations. The 
undisturbed Poiseuille velocity profile is 

At this time step, the centre of the capsule is at y ,  = 0.255, leaving a gap of 0.005 
u = 4(1 - y )y .  
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FIGURE 7. Distributions of surface stresses on the capsule. Re = 5000, p = 1.01, time step = 3, time 
t = 2.77 x 0 starts at the tip of the tail and goes clockwise as shown. (a) Pressure, made 
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underneath. The undisturbed velocity at the centre of the capsule is u, = 0.76. The 
capsule velocity is V,  = 0.265; this means that at y = 0.071, the capsule feels zero 
relative velocity from the fluid. Therefore, immediately under the tail (say, 0" < 8 < 
45") the flow is primarily coming from the right. This stream meets the flow entrained 
by the floor and a dividing streamline is created (figure 8). This gives rise to the 
maximum pressure under the tail. One should note that this high pressure is different 
from the ordinary stagnation pressure found at the front stagnation point on a solid 
obstacle in a stream. In the present case, two opposing streams form a compressing 
zone near 8 = 50", where the pressure is even higher than that at the front stagnation 
point (around 8 = 0"). 

Similar arguments can be applied to the minimum pressure under the nose. We again 
emphasize that the split streamline under the nose is different from an ordinary 
stagnation streamline impinging upon a solid body because of the effect of the wall. 
Here, the lower stream is caused by the entrainment of the floor, and the low pressure 
is inside an 'expansion' area stretched by diverging streams. 

The shear stress distribution supports the above explanation, as 7 vanishes roughly 
at the locations of the pressure extrema (figure 7b). The zeros of shear stress in a 
viscous fluid have been shown to correspond to the pressure extrema at the stagnation 
of an inviscid fluid (Huang et al. 1994). The pressure distribution in figure 7(a) 
produces positive torque that lifts the tail (figure 7c). 

Finally, we note that the tail-up lift-off observed in our simulations agrees with the 
picture suggested by the pressure distribution measured by Liu & Graze (1983) on a 
stationary cylindrical capsule. In their case, the dominant feature is a negative pressure 
on top of the tail related to a separation bubble. This up-lift, however, is not large 
enough to raise the tail. Liu & Graze remarked that 'once the tail of the capsule has 
been lifted up by any cause, the pressure under the capsule will rise sharply and a much 
larger net clockwise (their flow direction is opposite to ours) moment due to lift will be 
generated'. This seems to be what happens in our simulation for an elliptic capsule. 

4.1.2. Lift-ofs at relatively small Re 
For p = 1.01 and Re = 250, the particle raises its nose first (figure 5b). The 

streamlines of the relative flow immediately after release are shown in figure 9. At this 
moment, the particle translates at V,  = 0.569, and the undisturbed Poiseuille velocity 
at the centre of the capsule is u, = 0.76. Thus, the effect of the sliding motion of the 
floor, as compared to the effect of the Poiseuille flow at higher elevations, is much 
stronger than the high-Re lift-off in figure 6. An apparent difference is that under the 
nose, the circulation zone is further from the wall in figure 9 than in figure 6. This is 
because the floor entrains a thicker liquid layer under the nose. 

The pressure and shear stress distributions (figure 10a, b) show distinct effects of 
viscous shear around 8 = 90". The pressure variation between 8 = 60" and 120" is 
almost exactly what one expects from lubrication theory. The high pressure under the 
nose and the low pressure under the tail create a large negative (clockwise) torque on 
the capsule (figure 1Oc) and lift the nose. The magnitudes of p and 7 (scaled by pU;) 
are much larger for the low Re in figure 10 than for the high Re in figure 7. This loss 
of scaling indicates a change in the fundamental lifting mechanism. One may expect p 
and 7 to scale linearly with V,  at small Re when lubrication prevails. 

dimensionless by pr U,Z. (b) Shear stress, made dimensionless by pr U,'. The oscillation of 7 on top of 
the capsule is due to numerical errors in calculating the velocity gradient. ( c )  Pressure torque M ,  is 
computed from the pressure force on each segment of the capsule surface, clockwise torque being 
negative. It is made dimensionless by pr U,' L2. 
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FIGURE 8. Sketch of the streamlines around the capsule. The two dividing streamlines correspond to 
locations of maximum and minimum pressures, which overshadow the action at the front and rear 
stagnation points F and R. 

FIGURE 9. Streamlines around the capsule immediately after its release. Re = 250, p = 1.01, time step 
= 2, time t = 7.5 x The plus and minus signs indicate the positions of the maximum and 
minimum pressure. 

Lift-off with a nose-up posture prevails in a Re region whose upper limit is well over 
Re = 250. For Re = 1000, the nose still lifts off first. However, analysis of the pressure 
distribution indicates that lubrication and inertial effects coexist under the nose. The 
pressure due to entrainment rises to a maximum value as 8 increases from 75" to 110". 
Then there is a stagnation region between 0 = 110" and 180" in which the high pressure 
is maintained by inertia. Both effects contribute to the upward lift and clockwise torque 
on the capsule. 

It has been observed that long capsules tend to slide on the floor with their axes 
horizontal, and when the liquid velocity exceeds the lift-off velocity, the nose of the 
capsule lifts off first (Ellis 1964). Longer capsules have larger lift-off velocities (Liddle 
1968). If a certain fluid velocity is large enough to lift a short capsule in the tail-up 
fashion, it may not be able to do so on a long capsule. Instead, the long capsule slides 
and picks up a horizontal velocity. When the relative liquid flow becomes sufficiently 
large under the nose, the nose will be lifted off. This is similar to the picture drawn by 
Liu (1982) at much higher Reynolds numbers when inertia dominates; it is also 
consistent with our low-Re simulation discussed here. 

In summary, there is a qualitative difference between lift-off at large and small Re. 
At large Re, high pressure builds under the tail because of stagnation. At small Re, the 
stagnation pressure is not enough to lift the capsule. Instead, the fluid pushes the 
capsule forward until its sliding velocity is sufficiently large to produce enough 
lubrication lift under the nose. At somewhat higher Re, the nose-up configuration still 
prevails during initial lift-off, but inertial effect at the stagnation under the nose may 
also play a role. One may say that the Poiseuille flow in the central area of the channel 
dominates the flow caused by the sliding floor at high Re, and the wall-induced shear 
dominates the Poiseuille flow at low Re. 

4.2. Transient oscillations 
Following the initial lift-off, the capsule's elevation and tilt angle oscillate a few times 
before approaching its equilibrium configuration. An example of the transient 
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FIGURE 10. Distributions of surface stresses on the capsule. Re = 250, p = 1.01, time step = 2, 
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FIGURE 1 1 .  The transient bump and approach to steady flying for an elliptic capsule. 
Re = 1000, p = 1.01. 

oscillations is shown in figure 11. This transient occurs for all the values of Re and p 
we have tested except for Re = 100 and p = 1.01, in which case the capsule approaches 
its final configuration without overshoot. At larger Re and/or larger p, the number of 
cycles and the amplitude of oscillation are larger. 

We believe that the transient is associated with the inertia of the capsule. When first 
lifted, the capsule acquires a considerable upward velocity and the gap underneath 
becomes larger. So the hydrodynamic lift is reduced and is no longer enough to hold 
the buoyant weight of the capsule and it falls. This overshoot repeats while the capsule 
adjusts its elevation and orientation. The effects of Re and p on the transient support 
this argument based on the inertia of the capsule. The force and torque balance that 
establishes the steady flying as the transient subsides will be studied next. 

4.3. Steady flying 
In this regime, the equilibrium elevation ye  and tilt angle a, are functions of Re and p. 
Figure 12(a) shows the effect of Re for a capsule of density p = 1.01. Figure 12(b) 
shows the effect of changing p at a fixed flow Reynolds number Re = 1000. In both 
plots, we notice that the variation of ye  is monotonic. A lighter capsule carried by a 
faster flow always assumes a higher elevation in the channel. The tilt angle a,, however, 
exhibits complex patterns of variation. This suggests that under different conditions, 
the mechanisms of hydrodynamic forces and moment are different. Considering the 
effects of the channel walls and the velocity gradient, we naturally seek to identify the 
hydrodynamics with the elevation of the capsule. The orientation then changes as a 
result of the torque. 

4.3.1. Flying at low elevations 
The ellipse flies at low elevations for small Re and/or large p. We will analyse a 

typical run with Re = 1000 and p = 1.02. The streamlines of the relative flow are shown 
in figure 13.  The velocity of the capsule is V,  = 0.647, and the flow over the top of the 
ellipse is mostly from right to left. The area underneath, however, is dominated by the 
sliding floor. Therefore, one may expect strong lubrication near the nadir. The pressure 
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FIGURE 12. (a) The effect of Re on the elevation and orientation of the capsule in the steady flying 
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FIGURE 13. Streamlines around the capsule in steady flying. Re = 1000, p = 1.02, 
time step = 460, t = 97.23. 
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FIGURE 15. Lubrication approximation. We assume that the streamlines are nearly parallel in the 
gap and there is no secondary flow. 

distribution (figure 14a) does seem to confirm this, as p changes drastically from 8 = 

22.5" to 8 = 45". This area is close to the lowest point of the capsule where the shear 
stress has a maximum (figure 14b). Hence, the high pressure directly below the centre 
of the capsule must be caused by lubrication. The maximum pressure does not occur 
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at the stagnation point under the nose (0 z loo"), and so is not caused by inertia. We 
notice the negative pressure on top of the capsule (180" < 8 < 360") associated with the 
high velocity in the blocked region in the channel (a Bernoulli effect). This also 
contributes to the lift. 

A simple analysis of the lubrication effect can be carried out using the method of 
Reynolds (see Batchelor 1988, p. 219). Let us hold the capsule fixed in space so that 
the floor is sliding to the right at speed V,  (figure 15, we use dimensional variables in 
the following derivation). We consider the bottom of the capsule between -a cos a 
and a cos a. If the characteristic gap size H and the tilt angle a are small such that 
aV,H/vf + 1, the velocity profile in the passage can be approximated by a super- 
position of a Couette flow and a Poiseuille flow: 

The flow rate is 
h3 dp V h  

Q = r(*)u(x,y)dy = 12pf dx+* 
n 

so that the pressure gradient can be expressed by Q and V,: 

d~ - 6/+K 12PfQ 
dx h2 h3 ' 

Setting p( - a cos a) = 0, we have 

Because of the flow around the capsule inside the pipeline, there is a pressure difference 
1.3, = p (a cos a) -p( - a cos a). This determines the flow rate in the passage : 

where Sf. = f(a cos a) -f( - a cos a), 8, = g(a cos a) -g( - a cos a). Now the pressure 
distribution is 

The first part of this pressure distribution is proportional to V,  and is due to the moving 
wall. The second part is caused by the global flow in the pipeline. 

Because of the algebraic complexity in h(x), we compute f(x) and g(x) numerically. 
We use the geometrical parameters of the run with p = 1.01 and Re = 250 in equation 
(5) and compare the result with the pressure obtained from direct simulation (figure 
16). In this case, (b,/S,)g(x) only makes up 0.9 YO of the pressure p. So wall-induced 
motion is indeed the dominant mechanism. The variation of pressure near 0 = 35" is 
similar in both results. The magnitudes of the pressure extrema predicted by the 
lubrication theory are about 50 % larger than those obtained from direct simulation. 
Possible causes of the discrepancy are the error intrinsic to the lubrication 
approximation and the limited resolution of the numerical solution. Surprisingly, the 
upward lift integrated from the lubrication pressure p(x) is only 4% higher than the 
buoyant weight of the capsule. 
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FIGURE 16. Comparison of the pressure distributions obtained by the lubrication theory and the direct 
simulation. Re = 250, p = 1.01. p is made dimensionless by p, V,/H, H being the minimum gap under 
the nadir. 

Unlike the slider plate, our elliptical capsule has a curved surface and its tangent 
makes a variable angle with the floor. To be definite, we shall use the tilt angle a 
between the major axis and the ground in checking the criterion a V , H / v f <  1.  
For Re = 100, 250, 500 and 1000 in figure 12(a), the parameter aV,H/vf  assumes the 
followingvalues: 1.133 x 2.261 x lo-', 0.7522 and 11.54. Here His  taken to be the 
minimum gap beneath the nadir of the capsule. In addition, the lift obtained by 
integrating the pressurep is of the same order of magnitude as the buoyant weight only 
for Re = 100 and 250. Thus we may say that the lubrication theory applies only to the 
first two points in figure 12(a). In this lubrication regime, if we keep the buoyant weight 
of the capsule constant and increase Re, the velocity of the capsule V,  increases linearly 
with V,. Then the lift increases linearly and raise the elevation. The increase in the tilt 
angle a in figure 12(a) cannot be explained by the pressure caused by lubrication. 
Comparison of the pressure on the back of the capsule (180" < 0 < 360") at different 
Reynolds numbers shows that at higher fluid velocity, the positive pressure above the 
tail of the capsule is larger in magnitude and turns the capsule clockwise. The increase 
in V,, a and h work together to maintain the same lift. In figure 12(b), a tends to 
increase when p changes from 1.015 to 1.02. This may be associated with the fact that 
more lift needs to be generated at the same V,. 

If Re is further increased in figure 12(a), inertia becomes important. But the 
lubrication mechanism still exists in an area around the nadir of the ellipse. In both 
lubrication and inertial mechanisms, we expect the lift to increase with Re but decrease 
with H .  So the elevation increases monotonically with Re. The change in a reflects the 
complex details of the pressure distribution in the transition between lubrication- and 
inertia-dominated regimes, and an explanation is not available. The inertial regimes at 
still higher Re will be studied next. 

4.3.2. Flying at high elevations 
A capsule flies at high elevations if Re is very large or p is very small. The tilt angle 

a,, however, varies differently under the two conditions. If Re increases for a moderate 
p, a, increases and the capsule becomes more tilted (see figure 12a). On the other hand, 
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FIGURE 17. Streamlines around the capsule flying at high elevation. Re = 5000, p = 1.01, 
time step = 351, t = 379.5. 
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FIGURE 18. Distributions of surface stresses on the capsule in the steady flying regime. Re = 5000, 
p = 1.01, time step = 351, t = 379.5. (a) Pressure. The oscillation i n p  is caused by numerical errors. 
(b)  Shear stress; stagnation points with high and low pressures are marked by plus and minus signs, 
which should also be zeros of 7. These points are less obvious in the area below and around the nose 
because the relative flow is weak there. 
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FIGURE 19. Streamlines around a capsule with zero buoyant weight. Re = 1000, p = 1, V,  = 0.877, 
time step = 242, t = 144.5. 

if p is decreased for a fixed Re, a, decreases and the capsule becomes more aligned 
with the flow (figure 12b). Because of the large gap between the capsule and the 
floor, lubrication effects are expected to be small. Two extreme cases, with Re = 5000, 
p = 1.01 and Re = 1000, p = 1.0 will be analysed. 

For the first case, figure 17 shows six dividing streamlines and therefore six 
stagnation points on the surface of the capsule. These correspond to the zeros of the 
shear stress, which are also positions of pressure extrema (figure 18). The maximum 
pressure at 8 = 60" gives rise to the upward lift that balances the buoyant weight. This 
shows that inertia is the major agent for the lift force. Comparing figure 18 (a)  to figure 
14(a), we see that the position of maximum pressure underneath is moved toward the 
nose, and the stagnation pressure above the tail (8 M 348") becomes more important. 
These two differences suggest that the capsule will tilt more as V, increases. 

The other case with vanishing buoyant weight is intrinsically different because 
smaller and smaller lift forces are required as p + 1 .  The streamlines are shown in figure 
19. With the capsule centre slightly below the centreline of the channel, the flow field 
is almost symmetric above and below the capsule, again with six stagnation points. 
This near-symmetry is also reflected in the pressure and shear stress distributions 
around the capsule (figure 20). The fact that the pressure extrema are stronger on the 
underside than on the back is because the centre of the capsule is below the centreline, 
and thus the underside feels a stronger flow from left and right. 

Since gravity is removed, ( y e ,  a,) = (0.5,O) is an equilibrium configuration owing to 
symmetry. But it is not a stable one. We have confirmed this by releasing the capsule 
initially on the centreline and near the upper wall. In both runs, it stabilizes a little away 
from the centreline with a small tilt angle (see figure 12b). This seems to be related to 
the locations of pressure extrema. If a long body on the centreline is turned slightly by 
a disturbance, the stagnation point under the nose (near 8 = 112.5" in figure 20a) will 
turn it further. This mechanism is very much like the turning couple on a sedimenting 
long body (Huang et al. 1994), only here the low pressure above the tail keeps the 
capsule from turning its broadside all the way to perpendicular to the stream. Instead, 
the ellipse takes on a stable tilt angle and an equilibrium position that is slightly off the 
centreline. The effect of inertia is obvious if we recall that the symmetric configuration 
of y ,  = 0.5, a, = 0 is stable when u -  Vu is omitted from the Navier-Stokes equation (see 
$3). In summary, the tilt angle of a capsule decreases as its buoyant weight approaches 
zero, because very little lift is needed to support the capsule. For a neutrally buoyant 
capsule, the stable equilibrium tilt angle is not zero. 

In the analysis of the initial lift-off and steady flying of the capsule, we have focused 
on extreme cases and tried to identify the hydrodynamic mechanisms at work. In all 
the situations between these extremes, we expect co-existence of inertial and lubrication 
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FIGURE 20. Distributions of surface stresses on the capsule in the steady flying regime. Re = 1000, 

p = 1, V,  = 0.877, time step = 242, t = 144.5. (a)  Pressure, (b) shear stress. 

effects and a smooth transition of relative importance between the two. The non- 
monotonic variations of the tilt angle a, (around Re = 2000 in figure 12a and p = 1.01 5 
in figure 12b) cannot be explained based on the available information and more 
detailed data are required. However, our computed results giving the variation of 
clearance and tilt angle are the first reported. The only experimental data comparable 
to our results is, to our knowledge, in the thesis of Richards (1992). Because of the 
difference in the Reynolds number, the Froude number, the geometry of the capsule 
and the fact that the simulation is in two dimensions, direct comparison with his 
experiment is difficult. But the qualitative behaviour is the same at high flow rate, when 
both ye  and a, increase with V,. 

If we go to the limit of low flow rate, we may examine the concept of lift-off velocity. 
In experiments, the capsule (usually with flat ends, such as a coal log) experiences 
sliding, partial lifting (‘micro-lift ’) and complete lifting (‘ macro-lift ’) as the fluid 
velocity increases. During micro-lift, the capsule is a small distance above the ground 
with a small tilt angle, and frequent solid contacts exist. The lift-off velocity is defined 
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FIGURE 21. The clearance of the capsule at different fluid velocities. The abscissa is a dimensionless 
velocity suggested by Liu's correlation. The dashed line is twice the value given in equation (6)  
because V ,  is the average velocity in the pipe and U, is the maximum. 

1982). Our numerical program does not contain the dry friction and capsule-wall 
collision, and cannot simulate the transition from micro-lift to macro-lift. In fact, 
because our elliptic capsule has two natural wedges below its nose and tail, it can be 
floated by lubrication at very low fluid speed. This motion is similar to the micro-lift 
observed in experiments, but of different physical nature ; the mechanism for micro-lift 
is not yet completely clear. Ellis (1976) proposed vortical motion in front of the nose 
that provides upward shear, and Liu (1982) suggested microscopic lubrication films 
related to surface roughness. 

We may parallel the experiments by defining the lift-off velocity V,  in our simulation 
as the point where the clearance H starts to increase sharply with fluid speed V,. From 
figure 21, this point can be roughly taken as U,/[(p,/p,- l)gL]"2 = 1, which is about 
1/4 of the value predicted by the correlation that Liu (1982) proposed for a cylindrical 
capsule in a round pipe: 

112 v, = 7.2 [ e- 1) gL (1 -31 . 

This correlation has proved to be quite accurate for Richards' experiment. The 
discrepancy between our lift-off velocity and that obtained in experiments can be 
explained by the following reasons. An important difference is in the shape of the 
capsule. The geometry of an elliptic capsule is more conducive to lubrication under its 
nose. Besides, our simulation is two-dimensional, and in three-dimensional experiments 
the fluid can go around the capsule along its sides and produce less lift. Finally, 
turbulence in the fluid flow in the experiment may also be a factor. 

The use of elliptic capsules in our computations is good for illustrating the 
mechanisms of hydrodynamic lift, but is not appropriate in simulating the lift-off of a 
cylindrical capsule. Our results suggest that using capsules of an ellipsoidal shape may 
be advantageous in industrial applications. Simulations using rectangular capsules are 
being pursued to compare one shape with another. 
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The simulations presented here cover only a few aspects of capsule motion. Further 
work on the lift-off velocity is necessary to explore its dependence on various control 
parameters (cf. Ellis 1964 and Liu 1982). Effects of geometric parameters, such as the 
aspect ratio of the capsule d / L  and the blockage ratio in the channel d / D ,  on the general 
behaviour of a capsule also need systematic study. All these issues will be discussed in 
a future publication. 

5. Levitation of core flows? 
The levitation of capsules by inertia suggests that a similar mechanism may also 

work in the lubrication of slurries and viscous oils in water. The viscous material does 
not touch the wall. In the case of crude oil, the drag reduction which can be achieved 
by lubrication is of the order of the viscosity ratio with increased throughputs of ten 
thousand or more (for more background see Joseph & Renardy 1993). These lubricated 
flows are called core flows because the viscous material flows in a core lubricated all 
around by water. 

A surprising property is that core flow in a horizontal line will levitate off the wall 
whether the core is lighter or heavier than lubricating water. This levitation could not 
take place without a hydrodynamic lifting action due to waves sculpted on the core 
surface. In the case of very viscous liquids, the waves are basically standing waves 
which are connected with the core as it moves downstream. This picture suggests a 
lubrication mechanism for the levitation of the core analogous to mechanisms which 
levitate loaded slider bearings at low Reynolds numbers. Ooms et al. (1984) and 
Oliemans & Ooms (1986) gave a semi-empirical model of this type and showed that it 
generated buoyant forces proportional to the first power of the velocity to balance 
gravity. In this theory, the shape of the wave must be given as empirical input. 

Another possibility which is suggested by the study of levitation of capsules is that 
the levitation is due to lift forces generated by inertia. Liu’s (1982) formula (equation 
(6 ) )  for capsule lift-off in a pipeline in which the critical lift-off velocity is proportional 
to the square root of gravity times the density difference is an inertial criterion. It is 
likely that inertial dynamics is also involved in lubricated oil and slurry lines. At high 
speeds the core flows may literally ‘fly’ down the tube. 

The unsolved problem of start-up and lift-off of a stratified flow involves the 
levitation mechanisms under discussion. In all of this, as in the analysis of the flight of 
capsules and the problem of migration of particles across streamlines, the position of 
the viscous points of stagnation where the pressures are high is of critical importance. 

We have already mentioned that a heavy or light core flow without waves cannot be 
levitated. Such a core will rise or fall to a wall where it will stratify. When there are no 
waves to corrugate the surface, the axis of the core and all the straight line generators 
of the core interface are parallel to the pipe and no hydrodynamic mechanism of 
levitation can develop. It is obvious, but not so easily proved (Hesla, Huang & Joseph 
1993), that the net force and moment on the core due to interfacial tension are zero. 
When the densities of the oil and water are the same, the perfectly uniform core 
concentric with the pipe can be stable, if the parameters are in a certain small window 
(Joseph & Renardy 1993). This stability window also contains uniform eccentric cores, 
whose straight generators are parallel to the pipe wall (Huang & Joseph 1995). There 
is a great non-uniqueness with all kinds of eccentric core flows in the stable window and 
no centring mechanism can be found in the linear theory of stability. 

t This section was prepared by D. D. Joseph. 
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FIGURE 22. Levitation of heavy oil in water. (a) Saw-tooth waves arising from lubrication theory, like 
slider bearings. Ooms et al. (1984) gave a semi-empirical theory of this type (see their figure 2 )  and 
showed that it generated buoyant forces to balance gravity. Oliemans et al. (1985) extended this work 
to include the effects of turbulence in the water film, but the theory underpredicted the pressure. They 
said that inertia might explain the discrepancy. (b) Saw-tooth waves due to inertia, giving rise to 
aerodynamic lift. 

FIGURE 23. The saw-tooth waves on the oil core in a horizontal pipeline. The flow is from left to right. 
The oil is lighter than water, and the asymmetric waves on the upper surface give rise to an inertial 
lift that keeps the core from touching the ceiling of the pipe. 

Waves are necessary whether the core is levitated by lubrication forces proportional 
to U or by lift forces proportional to U 2 .  In experiments and in the field, the core flows 
are never strictly periodic in the direction of flow, but a definite wavelength can usually 
be determined. The wave form in a single ‘wavelength’ is not symmetric and the nature 
of asymmetry is related to the mechanism of levitation. The kind of asymmetric wave 
forms which are seen in practice are compatible with the inertial form of lift and not 
with lubrication. In figure 22, we compare the saw-toothed waves that might be 
expected (a)  from the theory of hydrodynamic lubrication and (b) from the theory of 
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FIGURE 24. Secondary motions in the troughs of the waves shown in figures 22(b) and 23 in a 
coordinate system in which the core is at rest and the pipe moves to left. 

aerodynamic lift. The photographs shown in figure 23 show that (b) appears to be the 
configuration one finds in practice. These shapes are even evident in mild form in the 
bamboo waves which develop in vertical flows where levitation is not an issue, but free 
surface distortion is (Bai, Chen & Joseph 1992; Joseph & Renardy 1993). 

The waves required by lubrication theory look like a slipper bearing in which the 
gentle ramp moves forward in the water, wedging water between the wall of the pipe 
and the wave on the core. The flow does not block anywhere so that the steep part of 
the crest is on the lee-side. The inertially dominated wave responds to the high 
pressure at the crest by deforming the core so that the steep part of the crest forms at 
the front side of the crest where the pressure is high, as in the photograph shown in 
figure 23. 

The high pressure at the front of the crest of the wave propagating into the water 
appears to be associated with a dividing streamline and the point of ‘viscous’ 
stagnation as in the dynamics of levitation of elliptic capsules shown in figures 6 and 
8. A sketch of the secondary motions that this stagnation flow might imply in the case 
of the core flow is shown in figure 24. The high pressure at stagnation points produces 
deep troughs. This is why the assumptions required to justify various long wave 
approaches to the nonlinear dynamics of core flows are not realized in practice. 

In the capsule problem, Liu (1982) talks about a micro-lift in which one part of the 
capsule is off the wall and macro-lift in which the particles are maintained in flight. 
Micro-lift seems to be allied to the start-up of vertically stratified, static core flow: 
stagnant light oil resting on the pipe roof or heavy oil on the pipe floor. Lubrication 
forces could be dominant in the start-up and might play a role in the flight of the oil 
core. 

6. Conclusions 
Because the purpose of this paper is to study the hydrodynamic mechanisms in the 

lift-off and flying of a capsule, some parameters used may be rather different from those 
encountered in an actual capsule pipeline. Based on the results and analysis presented 
in this paper, the following conclusions can be drawn within the parameter ranges 
covered in this study : 

(i) The motion of an elliptic capsule in a horizontal channel consists of three stages: 
initial lift-off, transient oscillations and steady flying. 

(ii) The initial lift-off has two distinct patterns. At large liquid velocity, the tail of 
the capsule lifts off first due to high pressure under the tail caused by inertia. At small 
liquid velocity, the nose lifts off first because of lubrication and possibly also inertial 
effects under the nose. 

(iii) The transient oscillations are results of the capsule inertia. 
(iv) The hydrodynamic mechanism for the steady flying regime is different depending 

on the elevation of the capsule. If the capsule flies at low elevation, lubrication is the 
major effect for the lift force; if the capsule flies at high elevation, inertial effect 
becomes more important. The behaviour of capsules flying at high liquid velocity 
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agrees qualitatively with the data of Richards (1992). The mechanism of inertial lift 
seems to apply to the levitation of heavy cores of crude oil in water-lubricated 
pipelines. 

(v) A capsule of zero buoyant weight stabilizes slightly off the centreline with a small 
tilt angle. The perfectly symmetric configuration with the capsule lying horizontal on 
the centreline is not stable. 
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